ЕГЭ по информатике и ИКТ Задача 18 (логические выражения)

Николаева Наталья Васильевна, зав. каф. ТМОИ СВФУ, к.ф.-м.н., доцент

	4.0	
	оикация задачи 18	6
СПСЦП	onitalin saga in io	

Раздел курса информатики и ИКТ	1.5 Логика и алгоритмы	
Проверяемые требования к уровню подготовки	Вычислять логическое значение сложного высказывания по известным значениям элементарных высказываний	
Проверяемые элементы содержания	Знание основных понятий и законов математической логики	
Уровень сложности	Повышенный	
Время выполнения	3 минуты	
Максимальный балл за выполнение задания	1	

Задание №18 (логические выражения)

Разбор задач:

Задачи №№ 177, 178 материалов для подготовки к ЕГЭ по информатике и ИКТ с сайта К.Ю. Полякова «Преподавание, наука и жизнь», kpolykov.spb.ru/school/ege.htm

Введём выражение *М* & *K*, обозначающее поразрядную конъюнкцию *М* и *K* (логическое «И» между соответствующими битами двоичной записи).

Введём выражение *М* & *К*, обозначающее поразрядную конъюнкцию *М* и *К* (логическое «И» между соответствующими битами двоичной записи).

& - логическое умножение, конъюнкция

Правила умножения:

$$0 \cdot 0 = 0$$

$$0 \cdot 1 = 0$$

$$1 \cdot 0 = 0$$

$$1 \cdot 1 = 1$$

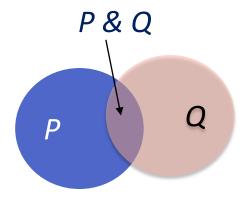


Таблица истинности:

P	Q	P & Q
0	0	0
0	1	0
1	0	0
1	1	1

Введём выражение *М* & *K*, обозначающее поразрядную конъюнкцию *М* и *K* (логическое «И» между соответствующими битами двоичной записи).

```
Пусть M = 24, K = 35:

24:2 | 0
12:2 | 0
6:2 | 0
3:2 | 1
4:2 | 0
1:2 | 1
0
```

Введём выражение *М* & *K*, обозначающее поразрядную конъюнкцию *М* и *K* (логическое «И» между соответствующими битами двоичной записи).

Пусть
$$M = 24$$
, $K = 35$:

$$M \& K = 011000_2 \& 100011_2 = 000000_2 = 0$$

Определите набольшее натуральное число A, такое что выражение

$$((x \& 38 = 0) \lor (x \& 57 = 0)) \to ((x \& 11 \neq 0) \to (x \& A = 0))$$
 тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной x)?

Введем обозначения:

$$P = (x \& 38 = 0)$$
 $Q = (x \& 57 = 0)$

$$R = (x \& 11 = 0)$$
 $T = (x \& A = 0)$

$$(P \vee Q) \rightarrow (\bar{R} \rightarrow T)$$

Определите наибольшее натуральное число *A*, такое что выражение

$$(P \vee Q) \rightarrow (\bar{R} \rightarrow T),$$

где

P = (x & 38 = 0), Q = (x & 57 = 0), R = (x & 11 = 0), T = (x & A = 0), тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной x)?

Попытаемся упростить выражение

⇒ избавимся от импликации

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

$$(P \vee Q) \stackrel{2}{\rightarrow} (\overline{R} \stackrel{1}{\rightarrow} T) \equiv 1$$

Свойство импликации:
$$\bar{R} \to T = \bar{\bar{R}} \lor T = R + T$$

1.
$$\bar{R} \rightarrow T = \bar{\bar{R}} \lor T = R + T$$

2.
$$(P \lor Q) \rightarrow (R + T) = \overline{P \lor Q} + (R + T)$$

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

$$(P \vee Q) \stackrel{\stackrel{2}{\rightarrow}}{\rightarrow} (\overline{R} \stackrel{\stackrel{1}{\rightarrow}}{\rightarrow} T) \equiv 1$$

Свойство импликации:
$$ar{R} o T = ar{ar{R}} \lor T = R \, + \, T$$

1.
$$\bar{R} \rightarrow T = \bar{\bar{R}} \lor T = R + T$$

2.
$$(P \lor Q) \rightarrow (R + T) = \overline{P \lor Q} + (R + T) =$$

Законы де Моргана:

$$\overline{P \lor Q} = \overline{P} \land \overline{Q}$$
 или $\overline{P + Q} = \overline{P} \cdot \overline{Q}$ или $\overline{P \lor Q} = \overline{P} + \overline{Q}$

$$=\overline{P+Q}+(R+T)=\overline{P}\cdot\overline{Q}+(R+T)=(\overline{P}\cdot\overline{Q}+R)+T=$$

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

$$= (\overline{P} \cdot \overline{Q} + R) + T = (\overline{P} \cdot \overline{Q} + R) \rightarrow T = (\overline{P} \cdot \overline{Q} \cdot \overline{R}) \rightarrow T =$$

$$(\overline{P} + \overline{Q}) \cdot \overline{R} \rightarrow T = (P + Q) \cdot \overline{R} \rightarrow T \equiv 1$$

Таким образом, нужно выбрать наибольшее A, такое, что при выполнении условия $(P+Q)\cdot \overline{R}$ автоматически выполняется и условие T.

Когда выполнено $(P+Q)\cdot \bar{R}=1$?

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

$$= (\overline{P} \cdot \overline{Q} + R) + T = (\overline{P} \cdot \overline{Q} + R) \rightarrow T = (\overline{P} \cdot \overline{Q} \cdot \overline{R}) \rightarrow T =$$

$$(\overline{P} + \overline{O}) \cdot \overline{R} \rightarrow T = (P + Q) \cdot \overline{R} \rightarrow T \equiv 1$$

Таким образом, нужно выбрать наибольшее A, такое, что при выполнении условия $(P+Q)\cdot \overline{R}$ автоматически выполняется и условие T.

Когда выполнено $(P+Q)\cdot \bar{R}=1$?

Когда одновременно: (P+Q)=1 и $\overline{R}=1$ (т.е. R=0).

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

 $(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$

+, или - логическое сложение, дизъюнкция

Правила сложения:

$$0 + 0 = 0$$
 $0 + 1 = 1$
 $1 + 0 = 1$
 $1 + 1 = 1$

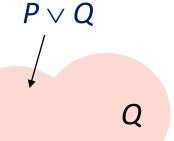


Таблица истинности:

P	Q	$P \vee Q$
0	0	0
0	1	1
1	0	1
1	1	1

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T \equiv 1$$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

 $(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$

Имеем 3 случая:

1)
$$P = 1$$
, $Q \neq 0$

2)
$$P = 0$$
, $Q \neq 1$

3)
$$P = 1$$
, $Q \neq 1$

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

 $(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$

1 случай P = 1, Q = 0, т.е. $x \& 57 \neq 0$

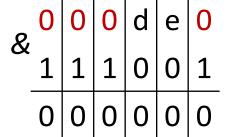
a, d, e = 0, b, c, f – любые, b + c + f > 0

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

 $(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$



2 случай:
$$P = 0$$
, $Q = 1$, т.е. $x \& 38 \neq 0$

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

 $(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$

1 условие:

$$P + Q = 1 \iff P = 1$$
 или $Q = 1 \iff (x \& 38 = 0)$ или $(x \& 57 = 0)$

3 случай:
$$P = 1$$
, $Q = 1$

a, b, c, f, d, e = 0, τ .e. x = 0

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

1)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; a, d, e = 0; b, c, f – любые, b + c + f > 0

 $c00f_2 \neq 0$, T.e. c + f > 0

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

1)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; a, d, $e = 0$; b, c, $f -$ любые, $b + c + f > 0$

 $c00f_2 \neq 0$, r.e. c + f > 0

b не зависит от с и f

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

1)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; a, d, e = 0; b, c, f – любые, c + f > 0

$$P = (x \& 38 = 0), Q = (x \& 57 = 0), R = (x \& 11 = 0), T = (x \& A = 0)$$

$$(P + Q) \cdot \overline{R} \rightarrow T \equiv 1$$

2 условие:

1)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; a, d, e = 0; b, c, f – любые, c + f > 0

Имеем 3 варианта:

$$x = 0b0001_2$$
, $x = 0b1000_2$, $x = 0b1001_2$

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

2)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; a, b, c, $f = 0$, d, $e - любые$, $d + e > 0$

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

2)
$$R = 0$$
, т.е. $x \& 11 \neq 0$; b, c, $f = 0$, d, $e - любые$, $d + e > 0$

$$x = 000d10_2$$

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

2 условие:

3)
$$R = 0$$
, $\tau.e. x & 11 $\neq 0$; $x = 0$$

Вариантов нет. Случай невозможен!

$$P=(x \& 38=0), Q=(x \& 57=0), R=(x \& 11=0), T=(x \& A=0)$$

$$(P+Q)\cdot \overline{R} \to T\equiv 1$$

Таким образом, имеем следующие варианты *x*:

$$x = 0b0001_2$$
, $x = 0b1000_2$, $x = 0b1001_2$, $x = 000d10_2$

$$T=1$$
: $0b0001_2 \& A=0$ Там, где в разрядах x находятся 0 $-$ в **наибольшем** A должна быть 1 , $0b1001_2 \& A=0$ а где $1-0!$ $000d10_2 \& A=0$

5 4 3 2 1 0

Наибольшее A во всех ситуациях = 100000_2 = 32

Введём выражение *М & К*, обозначающее поразрядную конъюнкцию *М* и *К* (логическое «И» между соответствующими битами двоичной записи).

Определите наименьшее натуральное число *A*, такое что выражение

 $(x \& 19 = 0) \land (x \& 38 ≠ 0) \lor ((x \& 43 = 0) → ((x \& A = 0) \land (x \& 43 = 0)))$ тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной x)?

Определите наименьшее натуральное число A, такое что выражение

$$(x \& 19 = 0) \land (x \& 38 \neq 0) \lor ((x \& 43 = 0) \rightarrow ((x \& A = 0) \land (x \& 43 = 0)))$$
 тождественно истинно (то есть принимает значение 1 при любом натуральном значении переменной x)?

Введем обозначения:

$$P = (x \& 19 = 0)$$
 $Q = (x \& 38 = 0)$

$$R = (x \& 43 = 0)$$
 $T = (x \& A = 0)$

$$P \cdot \overline{Q} + (R \rightarrow T \cdot R)$$

Введем обозначения:

$$P = (x \& 19 = 0)$$
 $Q = (x \& 38 = 0)$
 $R = (x \& 43 = 0)$ $T = (x \& A = 0)$

$$P \cdot \overline{Q} + (R \to T \cdot R) = P \cdot \overline{Q} + \overline{R} + T \cdot R = \overline{P \cdot \overline{Q} + \overline{R}} \to T \cdot R = \overline{P \cdot \overline{Q} \cdot R} \to T \cdot R = \overline{P \cdot \overline{Q} \cdot R} \to T \cdot R = \overline{P \cdot \overline{Q} \cdot R} \to T \cdot R$$

Введем обозначения:

$$P = (x \& 19 = 0)$$
 $Q = (x \& 38 = 0)$

$$R = (x \& 43 = 0)$$
 $T = (x \& A = 0)$

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

Введем обозначения:

$$P = (x \& 19 = 0)$$
 $Q = (x \& 38 = 0)$

$$R = (x \& 43 = 0)$$
 $T = (x \& A = 0)$

Тогда выражение:

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

Таким образом, нужно выбрать наименьшее A, такое, что при выполнении условия $(\overline{P} + Q) \cdot R$ автоматически выполняется и условие $T \cdot R$.

Когда выполнено $(\overline{P} + Q) \cdot R = 1$?

$$P = (x \& 19 = 0), Q = (x \& 38 = 0), R = (x \& 43 = 0), T = (x \& A = 0)$$

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

1 условие:

$$\overline{P} + Q = 1 \iff \overline{P} = 1$$
 или $Q = 1 \iff (x \& 19 \neq 0)$ или $(x \& 38 = 0)$

1) a, b, c, d, e, f – любые, b + e + f > 0, a + d + e > 0

2) a, b, d, e, f = 0, c – любое

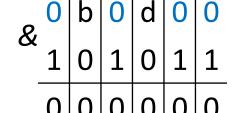
3) a, d, e = 0, b, c, f – любые и b + f > 0

$$P = (x \& 19 = 0), Q = (x \& 38 = 0), R = (x \& 43 = 0), T = (x \& A = 0)$$

$$(\overline{P} + Q) \cdot R \to T \cdot R \equiv 1$$

2 условие:

1) R = 1, a, b, c, d, e, f – любые и b + e + f > 0, a + d + e > 0 43 = 101011₂



$$d = 1, b = 1$$

$$x = 010100_2$$

$$P = (x \& 19 = 0), Q = (x \& 38 = 0), R = (x \& 43 = 0), T = (x \& A = 0)$$

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

2 условие:

$$43 = 101011_2$$

$$x = 000000_2$$

$$P = (x \& 19 = 0), Q = (x \& 38 = 0), R = (x \& 43 = 0), T = (x \& A = 0)$$

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

2 условие:

$$x = 010000_{2}$$

$$P = (x \& 19 = 0), Q = (x \& 38 = 0), R = (x \& 43 = 0), T = (x \& A = 0)$$

$$(\overline{P} + Q) \cdot R \rightarrow T \cdot R \equiv 1$$

000000 & A = 0 010100 & A = 0010000 & A = 0 Там, где в разрядах *х* находятся 1 — в *наименьшем А* должны быть 0, а где 0 — может быть как 1, так и 0!

Таким образом, наименьшее A во всех ситуациях = $000001_2 = 1$.

Желаю удачи на экзамене!!!

Для самоподготовки рекомендую сайт д.т.н., профессора, автора нового комплекта учебников по информатике К.Ю. Полякова kpolykov.spb.ru/school/ege.htm

