Линейная алгебра

1. Определители.

1. Определитель второго порядка задается равенством

$$\Delta = |A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

2. Определитель третьего порядка задается равенством

$$\Delta = |A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}.$$

3. Свойства определителей. 1. Определитель равен нулю, если он содержит: две одинаковые или пропорциональные строки; строку (столбец) из нулей. 2. Определитель не изменится, если к любой его строке прибавить другую строку, умноженную на некоторое число. 3. Разложение определителя по любой строке (столбцу):

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = \dots = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}.$$

- 4. Способы вычисления определителя третьего порядка.
- а). Правило Саррюса (дополнения):
- б). Правило треугольников:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} & a_{11} & a_{12} \\ a_{21} & a_{22} & a_{23} & a_{21} & a_{22} \\ a_{31} & a_{32} & a_{33} & a_{31} & a_{32} \end{vmatrix}$$

в). Разложение определителя по первой строке:

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}A_{11} - a_{12}A_{12} + a_{13}A_{13} = a_{11}A_{11} + a_{12}A_{$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

2. Действия над матрицами. Обратная матрица.

1. **Матрицей** A порядка $m \times n$ называется прямоугольная таблица, составленная из действительных чисел и содержащая m строк и n столбцов:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (a_{ij}).$$

- 2. Сумма (разность) матриц одного порядка $C = A \pm B \iff c_{ij} = a_{ij} \pm b_{ij}, \ i = \overline{1,m}; \ j = \overline{1,n}$
- 3. Произведение матрицы на число $B = \lambda A \Leftrightarrow b_{ij} = \lambda a_{ij} \ (i = \overline{1,m}; j = \overline{1,n}).$

4. **Произведением** AB матриц A и B называется матрица C = AB, элементы c_{ij} которой равны сумме произведений соответствующих элементов i -ой строки матрицы A и j -го столбца матрицы B

$$c_{ij} = \sum_{r=1}^{\kappa} a_{ir} b_{rj} \quad (i = \overline{1, m}; j = \overline{1, n}):$$

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \cdot \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} b_{11} + a_{12} b_{21} & a_{11} b_{12} + a_{12} b_{22} \\ a_{21} b_{11} + a_{22} b_{21} & a_{21} b_{12} + a_{22} b_{22} \\ a_{31} b_{11} + a_{32} b_{21} & a_{31} b_{12} + a_{32} b_{22} \end{pmatrix}.$$

При умножении матрицы порядка $m \times k$ на матрицу порядка $k \times n$ получится матрица порядка $m \times n$. **Некоммутативность** (неперестановочность) умножения матриц: $AB \neq BA$.

5. Если A - невырожденная *квадратная* матрица (определитель матрицы $|A| \neq 0$), то существует единственная матрица A^{-1} , называемая **обратной** к матрице A, такая, что $AA^{-1} = A^{-1}A = E$, где E - единичная матрица.

Чтобы **найти** A^{-1} необходимо: - вычислить определитель $\Delta = |A|$ матрицы A; - найти алгебраические дополнения A_{ij} каждого элемента a_{ij} матрицы A; - составить из чисел A_{ij} матрицу A^* ; - транспонируя матрицу A^* , составить матрицу A^* , составить матрицу A^* на число A^*

3. Системы линейных алгебраических уравнений.

Система линейных уравнений третьего порядка имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1, \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2, \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. \end{cases}$$

1. **Правило Крамера:** если определитель матрицы системы не равен 0, то система имеет единственное решение, которое определяется по формулам

$$x_1 = \frac{\Delta_1}{\Delta}, \quad x_2 = \frac{\Delta_2}{\Delta}, \quad x_3 = \frac{\Delta_3}{\Delta},$$

где Δ – определитель матрицы системы; Δ_k – определитель, получаемый из определителя Δ заменой k – го столбца столбцом свободных членов, k=1,2,3.

2. **Матричный способ:** система линейных уравнений в матричной форме имеет вид AX = B, где

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \quad X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}.$$

Решение матричного уравнения определяется формулой $X = A^{-1}B$

3. **Метод Гаусса** заключается в последовательном исключении неизвестных из уравнений системы. Для краткости вместо системы рассматриваем **расширенную матрицу** ее коэффициентов, которую приводим к треугольному виду:

$$\overline{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{pmatrix} \Rightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a'_{22} & a'_{23} & b'_2 \\ 0 & 0 & a''_{33} & b''_3 \end{pmatrix} \uparrow \uparrow$$

с помощью следующих, не меняющих решения, преобразований: $1. \, \mathrm{B} \, A$ можно менять местами строки.

2. Можно в A менять местами столбцы *слева от прямой черты*. **3.** К одной строке A можно прибавить другую, умноженную на некоторое число.

Треугольную матрицу записываем в виде уравнений снизу вверх, последовательно находя неизвестные.

4. Векторы.

Вектором называется направленный отрезок.

Координаты вектора с началом в точке $A(x_1, y_1, z_1)$ и концом в точке $B(x_2, y_2, z_2)$:

$$\vec{a} = A\vec{B} = (x_2 - x_1; y_2 - y_1; z_2 - z_1) = (X; Y; Z)$$

Длина вектора:

$$|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Проекция вектора на ось u: $np_u A \vec{B} = \left| A \vec{B} \right| \cos \varphi$, φ - угол между осью u и вектором $A \vec{B}$.

Направляющие косинусы: $\cos \alpha = \frac{x}{|\vec{a}|}; \cos \beta = \frac{y}{|\vec{a}|}; \cos \gamma = \frac{z}{|\vec{a}|}; \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$

Сумма (разность) векторов $\vec{a} = (x_1; y_1; z_1)$ и $\vec{b} = (x_2; y_2; z_2)$: $\vec{c} = \vec{a} \pm \vec{b} = (x_1 \pm x_2; y_1 \pm y_2; z_1 \pm z_2)$. Произведение вектора $\vec{a} = (x_1; y_1; z_1)$ на число $\lambda : \vec{b} = \lambda \vec{a} = (\lambda x_1; \lambda y_1; \lambda z_1)$.

Условие коллинеарности векторов: $\vec{a} \parallel \vec{b} \iff \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$

Разложение вектора \vec{d} по векторам $\vec{a}, \vec{b}, \vec{c}$: $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, где α, β, γ - координаты вектора \vec{d} в системе координат $O\vec{a}\vec{b}\vec{c}$.

5. Нелинейные операции над векторами.

1. Скалярное произведение векторов — $uucno \ \vec{a} \cdot \vec{b} = \left| \vec{a} \right| \left| \vec{b} \right| \cos \varphi;$ 1). проекция вектора на вектор $np_{\vec{b}}\vec{a} = \frac{\vec{a} \cdot \vec{b}}{\left| \vec{b} \right|};$ 2). если $\vec{a} = (x_1; y_1; z_1); \vec{b} = (x_2; y_2; z_2),$ то $\vec{a} \cdot \vec{b} = x_1x_2 + y_1y_2 + z_1z_2.$

Свойства: 1). $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$; 2). $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$; 3). скалярный квадрат $\vec{a}^2 = \vec{a} \cdot \vec{a} = |\vec{a}|^2$, тогда $|\vec{a}| = \sqrt{(\vec{a} \cdot \vec{a})}$; 4). $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$; 5). $\vec{i} \cdot \vec{j} = \vec{j} \cdot \vec{k} = \vec{k} \cdot \vec{i} = 0$; $\vec{i} \cdot \vec{i} = \vec{j} \cdot \vec{j} = \vec{k} \cdot \vec{k} = 1$.

Условие перпендикулярности векторов: $\vec{a} \perp \vec{b} \Leftrightarrow x_1 x_2 + y_1 y_2 + z_1 z_2 = 0$.

Угол между векторами:

$$\cos\varphi = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

2. Векторное произведение - вектор $\vec{c} = \vec{a} \times \vec{b}$, определяемый условиями: 1). $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \varphi$; 2). \vec{c} перпендикулярен и \vec{a} , и \vec{b} ; 3). вектор \vec{c} направлен так, что с его конца переход от первого сомножителя \vec{a} ко второму \vec{b} виден как переход против часовой стрелки.

В координатах, если $\vec{a} = (x_1; y_1; z_1), \vec{b} = (x_2; y_2; z_2),$ то

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} + \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} = \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix} \vec{i} + \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix} \vec{j} + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} = \begin{vmatrix} x_1 & x_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} = \begin{vmatrix} x_1 & x_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_1 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_2 & y_2 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_1 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_1 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_1 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_1 \end{vmatrix} \vec{k} + \begin{vmatrix} x_1 & x_1 \\ x_1 & y_$$

$$= \left\{ \begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}; \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix}; \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \right\}. \quad \left| \vec{a} \times \vec{b} \right| = \sqrt{\begin{vmatrix} y_1 & z_1 \\ y_2 & z_2 \end{vmatrix}^2 + \begin{vmatrix} z_1 & x_1 \\ z_2 & x_2 \end{vmatrix}^2 + \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix}^2} .$$

Свойства векторного произведения: 1). $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}$; 2). $\vec{a} \times \vec{a} = 0$; 3). $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$; 4). $\vec{i} \times \vec{i} = 0$, $\vec{j} \times \vec{j} = 0$, $\vec{k} \times \vec{k} = 0$; $\vec{i} \times \vec{j} = \vec{k}$, $\vec{j} \times \vec{k} = \vec{i}$, $\vec{k} \times \vec{i} = \vec{j}$; $\vec{j} \times \vec{i} = -\vec{k}$, $\vec{k} \times \vec{j} = -\vec{i}$,

 $\vec{i} \times \vec{k} = -\vec{j}$. Геометрически модуль векторного произведения – площадь параллелограмма: $S_{nap} = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \sin \varphi$.

3. Смешанное произведение векторов – число $\vec{a}\vec{b}\vec{c}=\vec{a}\cdot(\vec{b}\times\vec{c})=\vec{b}\cdot(\vec{c}\times\vec{a})==\vec{c}\cdot(\vec{a}\times\vec{b}).$

Если
$$\vec{a}=(x_1;y_1;z_1);\ \vec{b}=(x_2;y_2;z_2);\ \vec{c}=(x_3;y_3;z_3),$$
 то $\vec{a}\vec{b}\vec{c}=\begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$ Геометрически – объемы параллелепипеда и пирамиды: $V_{nap}=\pm\vec{a}\vec{b}\vec{c}$, $V_{nup}=\pm(1/6)\vec{a}\vec{b}\vec{c}$.

Условие компланарности векторов: $\vec{a}\vec{b}\vec{c}=0$.