Занятие 5. Линейные операции над векторами. Разложение вектора по базису.

Вектором называется направленный отрезок. Координаты вектора с началом в точке $A(x_1, y_1, z_1)$ и концом в точке $B(x_2, y_2, z_2)$

$$\vec{a} = A\vec{B} = (x_2 - x_1; y_2 - y_1; z_2 - z_1) = (X; Y; Z).$$

Длина вектора:

$$|\vec{a}| = \sqrt{X^2 + Y^2 + Z^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Проекция вектора на ось u: $np_u A\vec{B} = |A\vec{B}|\cos\varphi$, φ - угол между осью u и вектором $A\vec{B}$. Направляющие косинусы: $\cos \alpha = \frac{x}{|\vec{a}|}$; $\cos \beta = \frac{y}{|\vec{a}|}$; $\cos \gamma = \frac{z}{|\vec{a}|}$; $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$. Сумма (разность) векторов $\vec{a} = (x_1; y_1; z_1)$ $\vec{b} = (x_2; y_2; z_2)$: $\vec{c} = \vec{a} \pm \vec{b} = (x_1 \pm x_2; y_1 \pm y_2; z_1 \pm z_2)$. Произведение $\vec{a}=(x_1;y_1;z_1)$ на число λ : $\vec{b}=\lambda\vec{a}=(\lambda x_1;\lambda y_1;\lambda z_1)$. Условие коллинеарности векторов: $\vec{a} \parallel \vec{b} \Leftrightarrow \frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2}$. Разложение вектора \vec{d} по векторам $\vec{a}, \vec{b}, \vec{c}$: $\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$, где α, β, γ - координаты вектора \vec{d} в системе координат $O\vec{a}\vec{b}\vec{c}$.

Задачи.

- 1. По данным векторам \vec{a} и \vec{b} построить векторы $3\vec{a}$; $-\frac{1}{2}\vec{b}$; $2\vec{a} + \frac{1}{2}\vec{b}$; $\frac{1}{2}\vec{a} \vec{b}$.
- 2. Вычислить модуль вектора $\vec{a} = (6;3;-2)$.
- 3. Даны точки A(3;-1;2) и B(-1;2;1). Найти координаты векторов $A\bar{B}$ и $B\bar{A}$.
- 4.. Даны координаты вектора \vec{a} : X = 4, Y = -12. Найти Z, если $|\vec{a}| = 13$.
- 5. Найти начало вектора $\vec{a} = (2; -3; -1)$, если его конец совпадает с точкой (1;-1;2).
- 6. Проверить коллинеарность векторов $\vec{a} = (2; -1; 3)$ и $\vec{b} = (-6; 3; -9)$. Какой вектор длиннее, во сколько раз и как они направлены?
- 7. Разложить вектор $\vec{x} = (-2;4;7)$ по векторам $\vec{p} = (0;1;2), \vec{q} = (1;0;1), \vec{r} = (-1;2;4)$.
- 8. Вектор \vec{a} составляет с осями *OX* и *OY* углы $\alpha = 120^{\circ}$, $\beta = 45^{\circ}$. Какой угол вектор составляет с осью OZ?

Дополнительные задачи.

- 1. Найти модули суммы и разности векторов $\vec{a} = (3;-5;8)$ и $\vec{b} = (-1;1;-4)$.
- 2. Коллинеарны ли векторы $\vec{c}_1 = -2\vec{a} + \vec{b}$ и $\vec{c}_2 = 3\vec{a} 2\vec{b}$, где $\vec{a} = (3;4;4)$, $\vec{b} = (5;9;7)$?
- 3. Разложить вектор $\vec{x}=(2,5,-7)$ по векторам $\vec{a}=(2,1,1),\ \vec{b}=(1,3,1),\ \vec{c}=(1,1,5)$.
- 4. Даны: $|\vec{a}| = 13, |\vec{b}| = 19, |\vec{a} + \vec{b}| = 24$. Найти $|\vec{a} \vec{b}|$.
- 5. Дано разложение вектора $\vec{c} = 16\vec{i} 15\vec{j} + 12\vec{k}$ по прямоугольному базису. Найти разложение вектора \vec{d} , коллинеарного \vec{c} и противоположного с ним, при условии, что $|\vec{d}| = 75$.

Задачи для самостоятельной работы. Данко, ч.1. Гл. ІІ, пар. 2.

- 1. При каких α , β векторы $\vec{a} = -2\vec{i} + 3\vec{j} + \beta \vec{k}$ и $\vec{b} = \alpha \vec{i} 6\vec{j} + 2\vec{k}$ коллинеарны?
- 2. Найти конец вектора $\vec{c} = 3\vec{i} \vec{j} + 4\vec{k}$, если его начало находится в точке (1;2;-3).
- 3. Найти направляющие косинусы вектора $\vec{a} = 12\vec{i} 15\vec{j} + 16\vec{k}$.
- 4. Разложить вектор $\vec{x}=(-3,-4,-3)$ по векторам $\vec{a}=(1,2,2),$ $\vec{b}=(0,-1,-1),$ $\vec{c}=(1,2,1).$
- 5. Даны: $\left| \vec{a} \right| = 11, \left| \vec{b} \right| = 23, \left| \vec{a} + \vec{b} \right| = 30$. Найти $\left| \vec{a} \vec{b} \right|$.
- 6. В треугольнике ABC вектор $A\vec{B}=m$ и вектор $A\vec{C}=n$. Построить следующие векторы: $\frac{m+n}{2},\,\frac{m-n}{2},\,\frac{n-m}{2},\,-\frac{m+n}{2}$.